Refinement

|                                         | $h = 0.010$ $h^{-3}$                                  |
|-----------------------------------------|-------------------------------------------------------|
| Refinement on F <sup>2</sup>            | $\Delta \rho_{\rm max} = 0.212 \ {\rm e \ A}^{\circ}$ |
| $R[F^2 > 2\sigma(F^2)] = 0.0428$        | $\Delta  ho_{ m min}$ = $-0.221$ e Å <sup>-3</sup>    |
| $wR(F^2) = 0.1400$                      | Extinction correction:                                |
| S = 1.088                               | SHELXL93 (Sheldrick,                                  |
| 1426 reflections                        | 1993)                                                 |
| 210 parameters                          | Extinction coefficient:                               |
| H atoms riding                          | 0.0115 (36)                                           |
| $w = 1/[\sigma^2(F_a^2) + (0.0553P)^2]$ | Atomic scattering factors                             |
| + 0.6156P]                              | from International Tables                             |
| where $P = (F_o^2 + 2F_c^2)/3$          | for Crystallography (1992,                            |
| $(\Delta/\sigma)_{\rm max} = 0.001$     | Vol. C, Tables 4.2.6.8 and                            |
| •                                       | 6.1.1.4)                                              |
|                                         |                                                       |

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å<sup>2</sup>)

# $U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

|      | х          | У           | Z            | $U_{eq}$    |
|------|------------|-------------|--------------|-------------|
| CI   | 0.6631(7)  | 0.3219(7)   | 0.56877 (10) | 0.0482 (11) |
| C2   | 0.5240 (9) | 0.2755 (8)  | 0.54120 (10) | 0.0535(12)  |
| C3   | 0.5642 (9) | 0.0856 (8)  | 0.52263 (11) | 0.0555 (12) |
| C4   | 0.7441 (9) | -0.0548 (8) | 0.53222 (11) | 0.0537 (12) |
| C4a  | 0.8954 (8) | -0.0118 (7) | 0.56031 (10) | 0.0467 (11) |
| C5   | 1.0894 (8) | -0.1563 (7) | 0.56915(11)  | 0.0537 (12) |
| C6   | 1.2432 (8) | -0.1156 (7) | 0.59522(11)  | 0.0501 (12) |
| C6a  | 1.1960 (7) | 0.0731 (7)  | 0.61370 (10) | 0.0440 (11) |
| C7a  | 1.2304 (7) | 0.3241 (7)  | 0.65208 (10) | 0.0407 (10) |
| C8   | 1.3280(7)  | 0.4370(7)   | 0.68167 (10) | 0.0442(11)  |
| C8a  | 1.1925 (7) | 0.6374 (7)  | 0.69053 (10) | 0.0407 (10) |
| C9   | 1.2736 (8) | 0.7636(7)   | 0.71762 (10) | 0.0485 (12) |
| C10  | 1.1468 (8) | 0.9508 (8)  | 0.72662(11)  | 0.0522 (12) |
| C11  | 0.9411 (8) | 1.0132 (8)  | 0.70911 (10) | 0.0508 (12) |
| C12  | 0.8596 (7) | 0.8897(7)   | 0.68221 (10) | 0.0451 (11) |
| C12a | 0.9829 (7) | 0.7020(7)   | 0.67284 (10) | 0.0404 (10) |
| C13  | 0.8855 (7) | 0.5739(7)   | 0.64359 (10) | 0.0403 (10) |
| C13a | 1.0319(7)  | 0.3836(6)   | 0.63334 (10) | 0.0376 (9)  |
| C13b | 1.0077 (7) | 0.2195 (7)  | 0.60734 (9)  | 0.0400 (10) |
| C13c | 0.8508 (7) | 0.1820(7)   | 0.57907 (10) | 0.0420 (10) |
| 07   | 1.3353 (5) | 0.1374 (5)  | 0.64080 (7)  | 0.0480 (8)  |
| 08   | 1.5060 (5) | 0.3706(5)   | 0.69703 (7)  | 0.0600 (9)  |
| 013  | 0.6960 (5) | 0.6258 (5)  | 0.63008(7)   | 0.0558 (9)  |

#### Table 2. Selected geometric parameters (Å, °)

| C1—C2       | 1.366 (6) | C8—O8         | 1.219 (4) |
|-------------|-----------|---------------|-----------|
| C1-C13c     | 1.399 (5) | C8—C8a        | 1.477 (6) |
| C2—C3       | 1.397 (6) | C8a—C9        | 1.400 (6) |
| C3—C4       | 1.361 (6) | C8a—C12a      | 1.402 (5) |
| C4—C4a      | 1.416(6)  | C9-C10        | 1.387 (6) |
| C4a—C13c    | 1.424 (6) | C10-C11       | 1.377 (6) |
| C4a—C5      | 1.426 (6) | C11-C12       | 1.386 (5) |
| C5—C6       | 1.359 (6) | C12—C12a      | 1.384 (5) |
| C6—C6a      | 1.395 (6) | C12a—C13      | 1.503 (5) |
| C6a-07      | 1.379 (5) | C13-013       | 1.210 (4) |
| C6a—C13b    | 1.388 (5) | C13—C13a      | 1.472 (5) |
| C7a—O7      | 1.357 (5) | C13a—C13b     | 1.450 (5) |
| C7a—C13a    | 1.367 (5) | C13b-C13c     | 1.434 (5) |
| C7a—C8      | 1.467 (6) |               |           |
| O7—C6a—C13b | 111.6(4)  | O13—C13—C13a  | 123.4 (4) |
| 07—C6a—C6   | 123.2 (4) | O13-C13-C12a  | 120.7 (4) |
| C13b—C6a—C6 | 125.2 (4) | C7a—C13a—C13b | 106.1 (4) |
| O7—C7a—C13a | 112.3 (4) | C7a—C13a—C13  | 119.4 (4) |
| 07—C7a—C8   | 120.7 (3) | C13b-C13a-C13 | 134.3 (3) |
| C13a—C7a—C8 | 127.0 (4) | C6a-C13b-C13c | 118.9 (4) |
| O8—C8—C7a   | 122.4 (4) | C6a—C13b—C13a | 104.5 (3) |
| O8—C8—C8a   | 123.9(4)  | C13c-C13bC13a | 136.6 (4) |

H atoms were included at calculated positions (C—H 0.96 Å) riding on their attached C atoms, with  $U(H) = 1.2U_{eq}(C)$ . The refined value of the Flack (1983) absolute-structure parameter [0 (3)] indicates that the absolute configuration could not be determined reliably from the crystallographic data.

Data collection: CAD-4 EXPRESS Software (Enraf-Nonius, 1992). Cell refinement: CAD-4 EXPRESS Software. Data reduction: local programs. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: locally modified version of ORTEPII (Johnson, 1976; Mallinson & Muir, 1985). Software used to prepare material for publication: SHELXL93.

The authors thank the EPSRC for financial support (research studentship for CFS).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1045). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Enraf-Nonius (1992). CAD-4 EXPRESS Software. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Goldstein, P. (1975). Acta Cryst. B31, 2086-2097.
- Ishikawa, S., Hinoshita, H., Tagaki, M. & Ueno, K. (1988). Nippon Kagaku Kaishi, 5, 743-751.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kyba, E. P., Gokel, G. W., de Jong, F., Koga, K., Sousa, L. R., Siegel, M. G., Kaplan, L., Sogah, G. D. Y. & Cram, D. J. (1977). J. Org. Chem. 42, 4173–4184.
- Mallinson, P. R. & Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 1311-1313

# *cis*-Perhydro-1,3-dimethyl-4,5-(epoxyethanoxy)purine-2,6,8-trione

NEVENKA POJE,<sup>a</sup> MIRKO POJE<sup>a</sup> AND IVAN VICKOVIĆ<sup>b</sup>

<sup>a</sup>Laboratory of Organic Chemistry, Faculty of Science, University of Zagreb, Strossmayerov trg 14, Zagreb, Croatia, and <sup>b</sup>Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Ul. kralja Zvonimira 8, Zagreb, Croatia

(Received 5 June 1995; accepted 14 August 1995)

#### Abstract

The title compound,  $C_9H_{12}N_4O_5$ , adopts a distinct ring-twisted conformation defined by nearly orthogonal bridgehead torsion angles [C16—C15—C14—N19 –90.1 (2) and C26—C25—C24—N29 –87.8 (2)°]. The antiperiplanar array [C17—O14—C14—N19 –158.0 (2)

and C27-O24-C24-N29 -158.3 (2)°] does not allow stereoelectronically controlled ring-opening at the C4-N9 bond.

### Comment

As part of our extensive investigations of intermediates in enzymic uricolytic pathways, we were interested in the stereoelectronic effects controlling the ring opening of the purine system. The chemical model, the propellane (I), was completely stable toward acidic hydrolysis. The X-ray structure determination showed (I) to be the title compound, in which stereoelectronically controlled cleavage of the C4-N9 bond cannot occur.



An ORTEP (Johnson, 1965) drawing of the title molecule is shown in Fig. 1. The ring-twisted conformation, defined by nearly orthogonal bridgehead torsion angles [C16-C15-C14-N19 -90.1 (2) and C26-C25—C24—N29  $-87.8(2)^{\circ}$ ], corresponds to that found in the related compound cis-perhydro-4,5-dimethoxy-1methylpurine-2,6,8-trione (Poje & Vicković, 1987). The 1,4-dioxane ring has a slightly distorted chair conformation, with the C7-O4 bond oriented antiperiplanar to the N9 atom. The most interesting features of the arrays at the ester aminal C4 and the hemiaminal ether C5 atoms, of the conformation and of the hydrogen-bonding are given in Tables 2 and 3. As a result of the conformationally rigid arrangement, the ester aminal function becomes locked into a configuration where cleavage of the C4-N9 bond is no longer stereoelectronically allowed.



Fig. 1. View of the two independent molecules of (I) showing 50% probability displacement ellipsoids, the atom-numbering scheme and the dimeric association of imidazolone rings via a pair of hydrogen bonds (indicated by a dotted line).

### **Experimental**

Crystals of (I) (m.p. 487-488 K, with decomposition) were obtained through the reaction of 5-chloro-1,3-dimethyl-5,7-dihydro-3H-purine-2,6,8-trione with anhydrous ethylene glycol (Modrić, Palković, Perina, Poje & Vicković, 1994; Poje, Palković & Poje, 1995). Recrystallization was from water.

# Crystal data

 $C_9H_{12}N_4O_5$ Cu  $K\alpha$  radiation  $M_r = 256.218$  $\lambda = 1.54178 \text{ Å}$ Orthorhombic Cell parameters from 18  $Pna2_1$ reflections a = 15.187(5) Å  $\theta = 12 - 21^{\circ}$  $\mu = 1.080 \text{ mm}^{-1}$ b = 12.883(3) Å c = 11.468(3) Å T = 293 K $V = 2243.8(11) \text{ Å}^3$ Prism Z = 8 $0.28 \times 0.24 \times 0.15$  mm  $D_x = 1.5169 \text{ Mg m}^{-3}$ Colourless  $D_m = 1.51 \text{ Mg m}^ D_m$  measured by flotation in CH<sub>3</sub>Br-CH<sub>2</sub>Cl<sub>2</sub>

#### Data collection

| Philips PW1100/20 diffrac-   | $\theta_{\rm max} = 69.95^{\circ}$ |
|------------------------------|------------------------------------|
| tometer                      | $h = 0 \rightarrow 18$             |
| $\theta/2\theta$ scans       | $k = 0 \rightarrow 15$             |
| Absorption correction:       | $l = 0 \rightarrow 13$             |
| none                         | 3 standard reflections             |
| 1826 measured reflections    | frequency: 120 min                 |
| 1826 independent reflections | intensity decay: none              |
| 1680 observed reflections    |                                    |
| $[I > 2\sigma(I)]$           |                                    |
|                              |                                    |

Refinement

C11 C12 C13 C14 C15

C16

C17

C18

C19

| Refinement on $F^2$                                         | Extinction correction:     |
|-------------------------------------------------------------|----------------------------|
| R(F) = 0.0426                                               | SHELXL93 (Sheldrick,       |
| $wR(F^2) = 0.0711$                                          | 1993)                      |
| S = 1.013                                                   | Extinction coefficient:    |
| 1826 reflections                                            | 0.0065 (3)                 |
| 328 parameters                                              | Atomic scattering factors  |
| H-atom parameters not                                       | from International Tables  |
| refined                                                     | for Crystallography (1992, |
| $w = 1/[\sigma^2(F_o^2) + 0.0121P]$                         | Vol. C, Tables 4.2.6.8 and |
| where $P = (F_o^2 + 2F_c^2)/3$                              | 6.1.1.4)                   |
| $(\Delta/\sigma)_{\rm max} = 1.355$                         | Absolute configuration:    |
| $[U_{11}(C11)]$                                             | Flack (1983) parameter     |
| $\Delta \rho_{\rm max} = 0.249 \ {\rm e} \ {\rm \AA}^{-3}$  | = 0.15(17)                 |
| $\Delta \rho_{\rm min} = -0.238 \ {\rm e} \ {\rm \AA}^{-3}$ |                            |

# Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

### $U_{\rm cq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

| x          | у          | 2          | $U_{eq}$ |
|------------|------------|------------|----------|
| 0.2831 (4) | 0.5163 (3) | 0.8244 (4) | 0.086    |
| 0.3724 (2) | 0.3592 (2) | 0.7857(2)  | 0.043    |
| 0.4695 (2) | 0.2165 (3) | 0.7431 (3) | 0.056    |
| 0.3224(1)  | 0.2226(2)  | 0.6529(2)  | 0.029    |
| 0.2268(1)  | 0.2639(2)  | 0.6649(2)  | 0.029    |
| 0.2206(2)  | 0.3733 (2) | 0.7137 (2) | 0.042    |
| 0.2745 (2) | 0.0663 (2) | 0.7444 (3) | 0.050    |
| 0.2703 (2) | 0.2650(2)  | 0.4704 (2) | 0.035    |
| 0.1807 (2) | 0.0957 (2) | 0.7270(3)  | 0.046    |

| NH  | 0.2926 (2)  | 0.4115(2)   | 0.7726(2)  | 0.045 |
|-----|-------------|-------------|------------|-------|
| N13 | 0.3814(1)   | 0.2622 (2)  | 0.7407 (2) | 0.036 |
| N17 | 0.1991(1)   | 0.2612(2)   | 0.5435(2)  | 0.040 |
| N19 | 0.3450(1)   | 0.2552 (2)  | 0.5364 (2) | 0.032 |
| 012 | 0.4326 (2)  | 0.4020(2)   | 0.8366 (2) | 0.074 |
| 014 | 0.3257(1)   | 0.1137(1)   | 0.6522(2)  | 0.041 |
| 015 | 0.1736(1)   | 0.2072(1)   | 0.7405 (2) | 0.038 |
| 016 | 0.1527 (2)  | 0.4212(2)   | 0.7042 (3) | 0.072 |
| O18 | 0.2686(1)   | 0.2770(2)   | 0.3644 (2) | 0.049 |
| C21 | 0.0216(2)   | -0.0261 (2) | 0.0390(3)  | 0.056 |
| C22 | 0.1231(2)   | 0.1238(2)   | 0.0444 (2) | 0.041 |
| C23 | 0.2287 (2)  | 0.2635(4)   | 0.0526(3)  | 0.063 |
| C24 | 0.0817(1)   | 0.2868 (2)  | 0.1419(2)  | 0.033 |
| C25 | -0.0166(1)  | 0.2561 (2)  | 0.1309(2)  | 0.031 |
| C26 | -0.0318(1)  | 0.1407 (2)  | 0.1064(2)  | 0.035 |
| C27 | 0.0530(2)   | 0.4321 (3)  | 0.0182(3)  | 0.054 |
| C28 | 0.0208 (2)  | 0.2798 (2)  | 0.3247 (2) | 0.038 |
| C29 | -0.0448 (2) | 0.4158 (2)  | 0.0321 (3) | 0.050 |
| N21 | 0.0377 (2)  | 0.0838(2)   | 0.0668(2)  | 0.040 |
| N23 | 0.1371(1)   | 0.2267 (2)  | 0.0655(2)  | 0.042 |
| N27 | -0.0478(1)  | 0.2817(2)   | 0.2470(2)  | 0.038 |
| N29 | 0.0977(1)   | 0.2687 (2)  | 0.2644 (2) | 0.037 |
| O22 | 0.1796 (2)  | 0.0651 (2)  | 0.0070(2)  | 0.061 |
| O24 | 0.0957(1)   | 0.3931 (2)  | 0.1211 (2) | 0.046 |
| O25 | -0.0618(1)  | 0.3061(1)   | 0.0403 (2) | 0.035 |
| O26 | -0.1037(1)  | 0.1039(2)   | 0.1241(3)  | 0.056 |
| O28 | 0.0154(1)   | 0.2833 (2)  | 0.4318(2)  | 0.049 |
|     |             |             |            |       |

# Table 2. Selected geometric parameters (Å, °)

| C14—C15         | 1.552 (2) | C24—C25         | 1.550 (2)  |
|-----------------|-----------|-----------------|------------|
| C14—N13         | 1.441 (3) | C24—N23         | 1.440 (3)  |
| C14—N19         | 1.442 (3) | C24—N29         | 1.445 (3)  |
| C14014          | 1.404 (3) | C24             | 1.406 (4)  |
| C15-C16         | 1.519 (4) | C25—C26         | 1.531 (4)  |
| C15—N17         | 1.455 (3) | C25—N27         | 1.451 (3)  |
| C15—015         | 1.392 (3) | C25—O25         | 1.402 (3)  |
| N13-C14-N19     | 113.3 (2) | N23—C24—N29     | 114.0(2)   |
| N13-C14-O14     | 109.6 (2) | N23-C24-O24     | 109.4 (2)  |
| N19-C14-014     | 106.1 (2) | N29—C24—O24     | 107.3 (2)  |
| NI7—C15—O15     | 114.6 (2) | N27—C25—O25     | 114.6 (2)  |
| C12—N13—C14—N19 | 82.5 (3)  | C22-N23-C24-N29 | 76.7 (3)   |
| C16-C15-C14-N13 | 32.0 (3)  | C26-C25-C24-N23 | 34.3 (3)   |
| C16C15C14N19    | -90.1 (2) | C26-C25-C24-N29 | -87.8 (2)  |
| C17-014-C14-N19 | -158.0(2) | C27—O24—C24—N29 | -158.3 (2) |
| N17-C15-C14-N19 | 28.4 (2)  | N27-C25-C24-N29 | 29.7 (2)   |
| 014-C14-C15-015 | 38.6 (3)  | O24C24C25O25    | 38.7 (3)   |

### Table 3. Hydrogen-bonding geometry (Å, °)

| $D$ — $\mathbf{H} \cdot \cdot \cdot \mathbf{A}$                                                                | <i>D</i> —Н | $\mathbf{H} \cdots \mathbf{A}$ | $D \cdot \cdot \cdot A$ | $D = H \cdot \cdot \cdot A$ |  |
|----------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|-------------------------|-----------------------------|--|
| N17—H17· · · O28                                                                                               | 0.992(2)    | 2.117 (2)                      | 3.083(3)                | 164.1(1)                    |  |
| N29—H29· · · O18                                                                                               | 0.994 (2)   | 1.895(2)                       | 2.840(3)                | 157.7(1)                    |  |
| N19—H19· · ·O28'                                                                                               | 0.980(2)    | 2.012 (2)                      | 2.895 (3)               | 148.8(1)                    |  |
| N27—H27· · · O18"                                                                                              | 0.992 (2)   | 2.357 (2)                      | 3.187 (3)               | 140.7 (1)                   |  |
| Symmetry codes: (i) $\frac{1}{2} + x$ , $\frac{1}{2} - y$ , z; (ii) $x - \frac{1}{2}$ , $\frac{1}{2} - y$ , z. |             |                                |                         |                             |  |

Mean  $(\Delta/\sigma)$  is 0.359. The relatively large displacement parameters for the *N*-methyl C11 atom can be attributed to slight disorder.

Data collection: Philips PW1100/20 software. Cell refinement: Philips PW1100/20 software. Data reduction: local program. Program(s) used to solve structure: *SIR*88 (Burla *et al.*, 1989). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *ORTEP* (Johnson, 1965). Software used to prepare material for publication: *CSU* (Vicković, 1988, 1994).

### References

- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Modrić, N., Palković, A., Perina, I., Poje, M. & Vicković, I. (1994). Croat. Chem. Acta, 67, 347-360
- Poje, N., Palković, A. & Poje, M. (1995). Croat. Chem. Acta. Submitted.
- Poje, M. & Vicković, I. (1987). Acta Cryst. C43, 539-542.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Vicković, I. (1988). J. Appl. Cryst. 21, 987-990.
- Vicković, I. (1994). J. Appl. Cryst. 27, 437.

Acta Cryst. (1996). C52, 1313-1316

# **DL-Glutamine**

STEPHEN SURESH, S. PADMANABHAN AND M. VIJAYAN\*

Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India. E-mail: mv@mbu.iisc.ernet.in

(Received 31 July 1995; accepted 6 October 1995)

### Abstract

In the structure of DL-glutamine (3,5-diamino-5-oxo-pentanoic acid,  $C_5H_{10}N_2O_3)$ , the molecules aggregate into double layers involving head-to-tail sequences stabilized by hydrogen bonds between main-chain atoms. The double layers are stacked along **a** with the help of hydrogen bonds between side-chain atoms. This pattern is fundamentally different from that in the structure of Lglutamine, but is very similar to those in the structures of DL-methionine and hydrated L-arginine D-glutamate. The essential features of different possible aggregation patterns of amino acids appear to be determined by interactions involving main-chain atoms.

### Comment

Glutamine is among the very few amino acids for which the crystal structure of only the L isomer is known. We felt it important to determine the structure of the racemate for two reasons. Firstly, a comparison of the structures of L- and DL-amino acids provides useful insights into the effect of chirality on molecular aggregation (Soman & Vijayan, 1989). Secondly, our long-term program on the study of crystalline complexes involving amino acids and peptides (Vijayan, 1988; Prasad & Vijayan, 1993; Suresh, Prasad & Vijayan, 1994; Suresh & Vijayan, 1995), aimed at elucidating the geometrical features of biologically and evolutionary important interactions, involves the comparison of the

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry, including torsion angles and intraand intermolecular contact distances, have been deposited with the IUCr (Reference: KA1144). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.